

Change Management in Agriculture to Achieve Smallholder Impact at Scale

Marco Ferroni Syngenta Foundation for Sustainable Agriculture

McGill University Montreal, October 14, 2014

Touch points for smallholder impact at scale

Services

Extension, credit, connectivity

Market access

Storage, logistics, information

Governance

Law & order, property rights, outlook

Technology

Seeds, crop protection, mechanization

Risk management

Agronomy, crop mgt, weather solutions, index insurance

Sustainability

Livelihood, grow more with less, climate-smart

/ Credit

Health & Nutrition

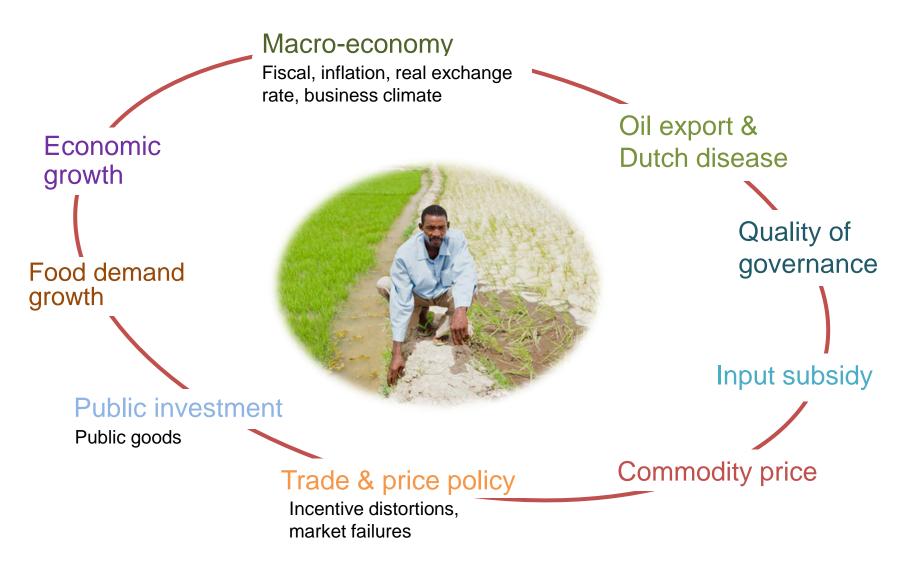
Agri-finance

Youth

Jobs, opportunity, technology

syngenta foundation for sustainable agriculture

Community


Cohesion, reciprocity, cooperation

Gender

Equity, access to technology/resources

Enablers of smallholder impact at scale

(... or disablers, as the case may be ...)

Framework for thinking about scaling up (1/3)

What is 'scaling up'?

- Uptake of innovations by large numbers of farmers, ultimately through market mechanisms and commercial channels
- Adaptation and expansion of successful policies, programs, approaches or projects in different places and over time to reach a greater number of people

Dimensions of scaling up:

- Quantitative (replication or 'scaling out')
- Functional (broadening scope of activity)
- Institutional (building capacity)
- Political (influencing political processes)
- · Partnership based
- Tipping points

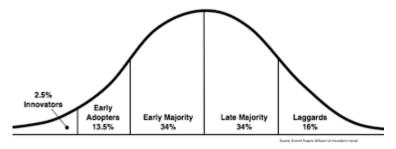
Drivers and methods for scaling up:

- Relevant products, solutions
- Leadership and vision of scale
- · External catalysts and 'time is ripe'
- Incentives and accountability
- Demo effects (lead farmer, off-taker, etc)
- Sound metrics and M&E (slide 6)

From 'feel-good' successes to recognized, large scale effects:

Evaluation of exactly how things scaled or failed to is rare

Adapted from Hartmann and Linn, 2008


Framework for thinking about scaling up (2/3)

Theories:

- Diffusion of innovation
- Induced innovation
- Directed technical change
- Path dependency
- D-driven vs S-driven models
- Role of policy, institutions

Common determinants of tech adoption by farmers:

- Relevance of product, technology, solution
- Access to
 - Knowledge about it
 - Market opportunities
 - Necessary purchased inputs
 - Financial resources
- Riskiness of technology
- Property rights over natural resources
- Ability to organize collective action
- Household characteristics:
 - Age, gender, farm size
 - 5 Educational level

Diffusion of innovation theory as an assumed mechanism of scaling up (following Rogers, 2003)

Is the innovation

- Credible?
- Observable?
- Relevant?
- Better than current practice?
- Easy to transfer and adopt?
- Compatible with user's context?
- Testable or tried?

Adapted from Wigboldus and Leeuwis, 2013; Hazell, 2014

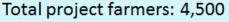
Framework for thinking about scaling up (3/3)

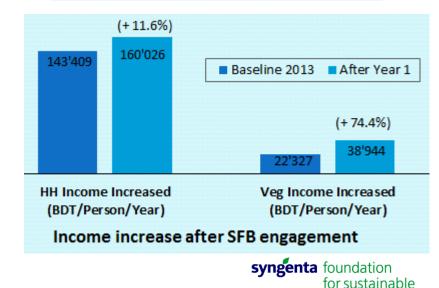
Role of metrics:

- Monitor change with reference to baseline
- Create database for following through (farm • management and project input-output data; MIS; outcome and impact indicators)
- Enable decision-making, accountability, • learning

Selected farm- and hub-level indicators to track:

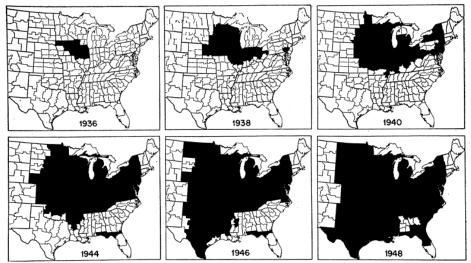
- Production cluster
- Post-harvest handling and sales cluster ٠
- Financial data (costs, input loans, revenue ۲ streams, profitability)

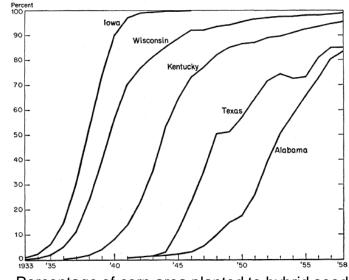

SFB's 'mixed-methods' metrics program:


- Desk review; stakeholder surveys
- Household surveys; focus group discussion ٠
- Farmer data base (incl. base line) ٠
- Project MIS
- Monthly monitoring report
- Periodic monitoring report 6

Syngenta Foundation Bangladesh (SFB): Farmer hubs, veg production for domestic markets 1 year on

(+43.26%)12 11.26 10 8 Vield 7.86 Increased 6 (MTs/Acre) 4 2 0 Baseline 2013 After Year 1


Yield increase after SFB engagement



Hybrid corn and the economics of innovation

Spread of hybrid corn in the U.S., 1936-48

Areas with >10% hybrid seed of total corn acreage

Percentage of corn area planted to hybrid seed

- S-shaped pattern of diffusion (slow at first, accelerating until reaches peak, slowing down as laggards enter)
- Geographic differences in the use of hybrid corn explained by differences in the profitability of that use (adoption more profitable in 'good' areas)
- Initial supply constraint: Breeding infrastructure for locally adapted varieties and availability of seed
- Worth noting: Improved seed pulls in technology

Bt cotton as an illustration of the same phenomenon today

Cotton in India: Similar to hybrid corn in the U.S. 65 years before

Area dedicated to Bt cotton in Inda (light green) compared to total cotton area (dark green)

- First approved in 2002, heralding in a new era in Indian agriculture (S-curve)
- 2013: 7.3 million farmers growing Bt cotton on 11 million hectares in India
- 2014: Over 1,000 approved *Bt* cotton hybrids on the market

Farmer relevance and availability of locally adapted varieties among the keys

Source: VIB 2013

State of adoption of modern varieties in Africa (1/2)

Farmers largely rely on old varieties

Сгор	Total area (ha)	Adopted area (ha)	% MVs
Soybean	1,185,306	1,041,923	89.7
Maize-WCA*	9,972,479	6,556,762	65.7
Wheat*	1,453,820	850,121	62.5
Pigeonpea	365,901	182,452	49.9
Maize-ESA*	14,695,862	6,470,405	44.0
Cassava*	11,035,995	4,376,237	39.7
Rice*	6,787,043	2,582,317	38.0
Potato*	615,737	211,772	34.4
Barley*	970,720	317,597	32.7
Yams	4,673,300	1,409,309	30.2
Groundnut*	6,356,963	1,854,543	29.2
Bean*	2,497,209	723,544	29.0
Sorghum*	17,965,926	4,927,345	27.4
Cowpea	11,471,533	3,117,621	27.2
Pearl millet*	14,089,940	2,552,121	18.1
Chickpea	249,632	37,438	15.0
Faba bean	614,606	85,806	14.0
Lentil	94,946	9,874	10.4
Sweetpotato	1,478,086	102,143	6.9
Banana	915,877	56,784	6.2
Field pea	230,749	3,461	1.5
Total/weighted average	107,721,630	37,469,577	34.78

Adoption of MV in SSA in 2010 (Adapted from DIIVA report, ASTI, July 2014) 'MV' = modern variety

DIIVA (2014) research scope and design:

From science capacity (NARS) to varietal output and adoption: 20 crops, 30 countries, 1150 cultivars

Productivity and impact pathways not traced

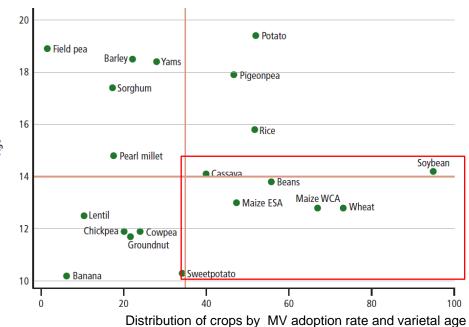
Results:

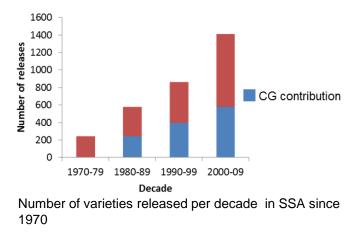
- MVs adopted on 35% of crop-weighted area
- Asia reached this level in 1970, Latam in the 1980s
- Higher adoption in commercially oriented crops
- Huge discrepancies across countries, crops
- Varietal turnover slow; long delay from breeding to release syngenta foundation

for sustainable

State of adoption of modern varieties in Africa (2/2)

Rate of release and adoption

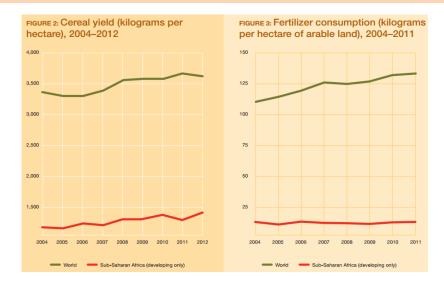

- Delineation by age and adoption indicative of comparative profitability of investments in crop improvement
- High adoption and turnover rates mostly for commercially important hybrid crops
- Commercial value drives development and adoption of new varieties (Griliches 1960)


Varietal release over time

- Varietal release rate growing
- Direct contribution from CGIAR stable over time at 40-45% of total varieties; indirect contribution possibly 65%
- Recent yield increases of major crops underscore new dynamics in parts of African agriculture

Data challenges

- Limited reliability of expert panels and on-farm surveys
- Data frequently only covering a limited number of crops per country


syngenta foundation for sustainable agriculture

DIIVA report, ASTI, July 2014

State of fertilizer use in Africa (1/2)

Fertilizer subsidy

- 1970s/80s: Fertilizer sold at subsidized prices through state enterprises >> high fiscal cost, ineffective implementation
- Subsequent structural reforms led to elimination of state monopolies and universal subsidies
- African Fertilizer Summit 2006: 'Grant targeted subsidies in favor of the fertilizer sector' >> resurgence of subsidy programs, with mixed record of success
- <u>Good</u>: Increased access to fertilizer; productivity gains; food security
- <u>Less desirable</u>: Market distortions; rentseeking; delays in delivery; ineffectiveness in reaching remote farmers; no exit strategy

Cereal yield and fertillizer use, World and Sub-Saharan Africa (WDI, Worldbank)

'Smart subsidies'

- Targeted
- Time-bound
- Promoting market development and poverty reduction

Vouchers

• Best practice at this time

syngenta foundation for sustainable agriculture

Following Minot, Benson (2009)

State of fertilizer use in Africa (2/2)

Malawi

- Expanded subsidy program from 2005
- By 2009, ~ 1.5 million farmers (60%of total) received vouchers for up to two 50 kg bags of fertilizer
- Sizeable increase in maize production, food security
- Other welfare impacts
 more nuanced
- Benefit/cost ratio ~ 1.3

	Current season impacts	Lagged season impacts	Wider seasonal changes
Maize production	+ve	+Ve	+ve
Net crop income	+ve	Х	+ve
Food consumption	+ve but limited	+ve but limited	+ve for 2006/7 & 8/9
School enrolment	?	+ve	+ve
Child health	?	+ve	+ve
Subjective well-being	Mixed (+ve, X)	Х	+ve
Household income	?, +ve	?	?
Physical assets	Х	Mixed (weak +ve, X)	+ve
Shocks	+V6*	+Ve*	-ve

Malawi direct subsidy impact

Notes: * Possible reverse causality.

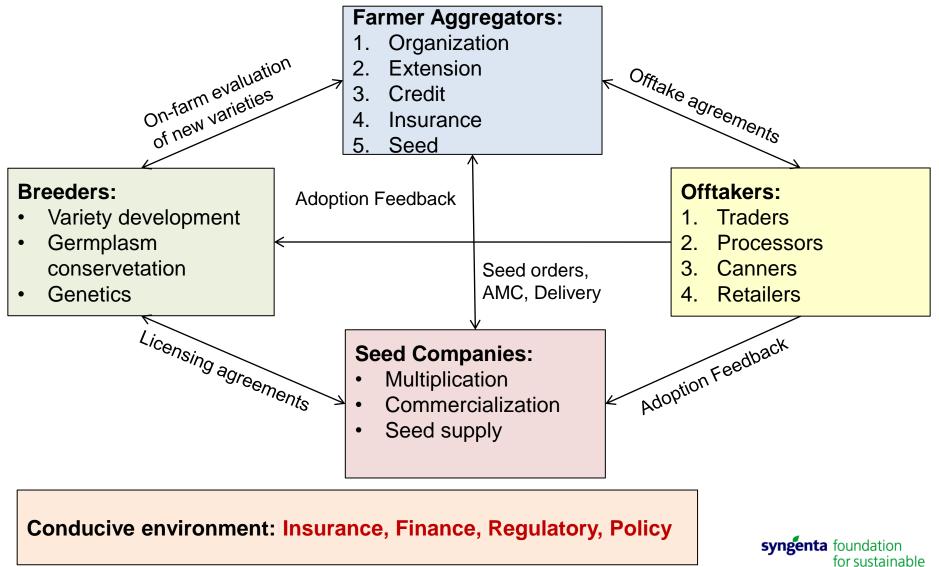
+ve: evidence for positive change; X: evidence does not suggest change.

-ve: evidence of negative change; ?: lack of evidence.

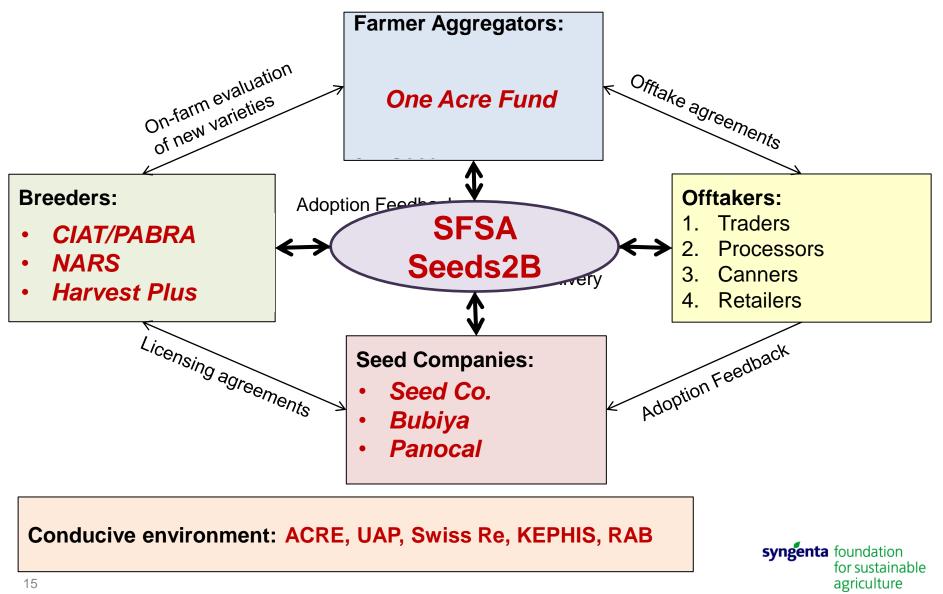
Source: Chirwa & Dorward, 2013

Rwanda

- Crop Intensification Program 2007 >> procured fertilizer for sale to farmers at Kigali landing cost; decided to phase out government's traditional role in fertilizer market; introduced auction, electronic bidding and voucher system
- Performance:
 - Affordability and access gains; voucher system performing reasonably well
 - Microfinance institutions brought in (credit)
 - Private fertilizer mkting and distribution: work in progress

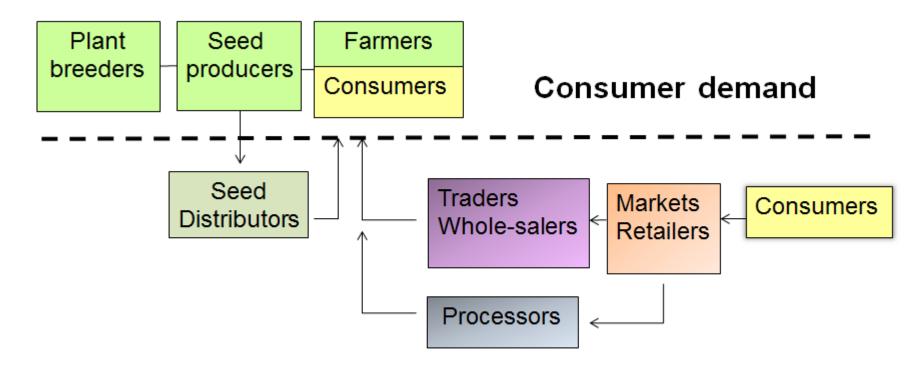

List of needed actions is long (cf. slides 2 and 3); I'm selecting three aspects for discussion today:

- Developing the seed market
- Breeding to meet market demand
- Rationalizing fertilizer support


Developing the seed market

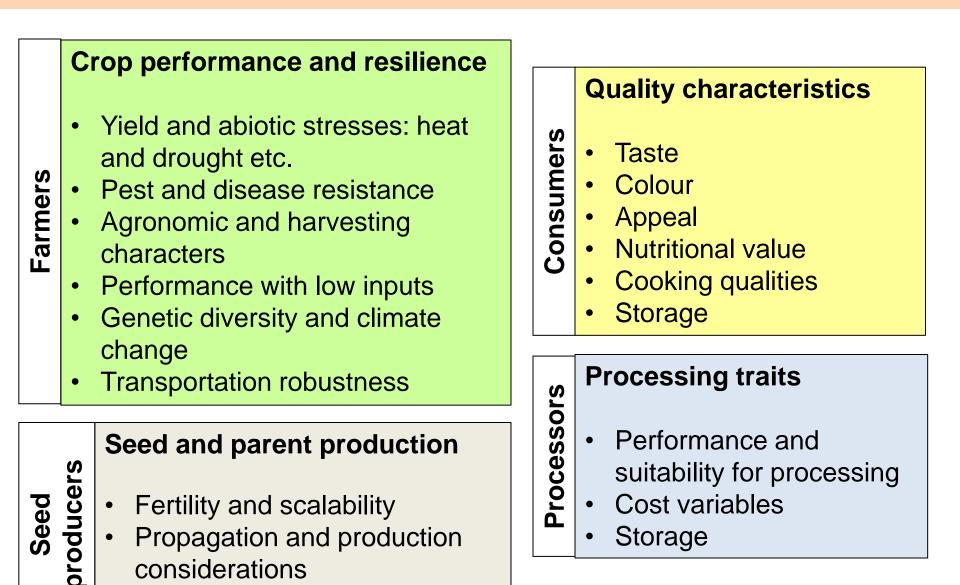
Players and interactions needed for functioning seed systems

Developing the seed market


SFSA's approach in East Africa ('Seeds2B')

Breeding to meet market demand (1/2)

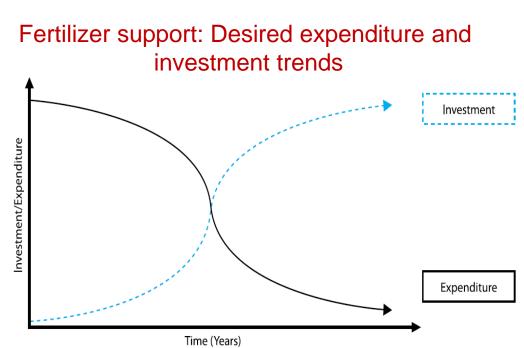
"Technology/policy/donor-push"


Crop production

Breeding to meet market demand (2/2)

Cost of production

syngenta foundation for sustainable agriculture


17

•

Rationalizing fertilizer support

Recommendations:

- Subsidy not to be seen as a recurrent expenditure, but an investment to raise the efficiency, effectiveness and profitability of fertilizer use
- Government to withdraw from direct involvement in importation and distribution; instead to provide purchasing power support to poor farmers
- Targeting through vouchers
- Complementary services (credit, insurance, extension, post-harvest handling and storage, value chains; link to seed supply)
- Integrate subsidy program into private fertilizer market
- Provide for exit in due course

syngenta foundation

for sustainable

agriculture

Source: NEPAD/IFDC 2013

18

Thank you! Let's talk.

