

Demand-led innovative R&D

SFSA-AIFSC collaboration on plant breeding Customer-focused variety design

Viv Anthony 4 August 2013

Background

- External context
- Technology push vs. demand-led
- Collaboration work programme
- NARS co-development and piloting implementation

Africa R&D landscape

Shifting the balance

Genomics revolution

High-throughput sequencing Molecular markers Use of genetic diversity Climate change imperative Economic growth
Market emergence
African investment

Breeding impact pathway

Demand-driven crop improvement

"Technology-push"

Work programme

YEAR 1-2

Investigative research

Public and private approaches
International, African SROs and NARS
Australian experiences
Market research in Africa
Public information sources
Foresight integration
African policy analysis

YEAR 1-3

Implementation

Decision tool box

NARS pilot

Market research studies

Curriculum development

Post-graduate training

YEAR 2-3

Policy

Policy communication briefs

Advocacy campaign

syngenta foundation for sustainable agriculture

NARS piloting and implementation

- Partnering with small number of selected NARS, BecA and WACCI
- Smallholder farmers and target customers are clearly defined who, where, how many
- Farmers and consumers needs and factors affecting their buying decisions are defined by market research studies
- Target product profiles of new varieties created
- Plant breeding/science options reviewed and trade-off's made
- New variety profile adoption validation
- Multi-functional team for delivery
- Best project management approaches integrated into delivering the science programme - critical path planning, risk, management and accelerated operational approaches, reviews/decision milestones

syngenta foundation for sustainable agriculture

Core principles

1. Smallholder farmers and consumers

- Understand the needs and preferences
- Put first to drive the priority-setting for R&D programmes

2. Value chain

 Understand market value chain buying and selling decisions for each stakeholder from provision of inputs to the farmer along the whole supply chain to the consumer

3. Market research

- Rigorous use of proven tools and approaches with farmers, consumers and stakeholders
- Test and validate key assumptions about needs, problems and preferences for solutions

4. Market trends and drivers

 Longer-term visioning of key drivers that can change needs of farmers and markets

e.g. governmental production and trade policies, the enabling environment, climate change etc.

syngenta foundation for sustains

Core principles

5. Public-private knowledge and expertise

- Use of best practices from both public and private sectors for market research, R&D targeting, setting science specifications to create products, technology solutions, product development, reach of inputs/outputs to and from farmers, crop processing, insurance and credit, seed systems and market development
- PPPs where benefits cannot be achieved by the individual partners alone

6. Solution development and validation

- Multi-functional team approach
- Considering the full range of creative possibilities technical and commercial including feasibility, cost and trade-offs of needs vs. likelihood of success
- Concept and prototype testing with users before and during product development

Core Challenges

- Farmer and consumer consultation
- Multi-functional team approach
- Solution-focused outputs: technology vs. demand orientation
- Public-private partnerships
- Product development
- Project management

Diverse product drivers -1

Biological parameters

Crop performance and resilience

- Yield in range of agro-ecological climates and abiotic stresses
- Resistance to pests and diseases
- Agronomic, morphological and harvesting considerations
- Performance with low inputs and responsiveness to fertilizer
- Nutritional profile
- Post-harvest and storage
- Genetic diversity and durability to climate change: drought, heat
- Transport robustness

Seed/parental production

- · Fertility and scalability
- Propagation and production considerations
- Cost of production

Processing

- Performance/suitability for processing
- Storage

Diverse product drivers -2

Market, price and adoption

Clear benefits and improvement differentiation

Agro-economic and regulatory drivers

- National policy and trade drivers
- Seed systems operational or capacity building needed
- Freedom to operate, accessing germplasm and use of techniques with IP
- Registration considerations (GM/Non-gm)

R&D costs and feasibility

- Time, cost and likelihood of success
- Sources of germplasm, molecular markers etc
- Availability of bioassays, trialling resources vs innovation required

Customer preferences

- · Form, taste. colour, texture
- Cooking qualities
- Storage

